NONLINEAR NEAR-RESONANCE OSCILLATIONS OF A GAS IN A TUBE OF
VARTABLE CROSS SECTION

A. L. Ni UDC 534.2:532

The nonlinear near-resonance oscillations of a gas in a tube of variable cross section
are investigated; one end of the tube is closed, and the other end is terminated in a piston,
the velocity of which, u, = Saof(t), is a periodic function of the time (@, is the sound
velocity in the undisturged gas, 0§ << 1). The three-dimensional nature of the basic problem
is taken into account in the gquasi-one~dimensional approximation. The analysis is carried out
in a range of frequencies close to the resonance frequencies of a cylindrical tube of the
same length. The influence of viscosity is neglected.

The problem has been investigated previously [1] in a similar setting. Its analysis was
based on a method [2, 3] whereby the solution is presented in the form of a power series in a
small parameter ¢ = £(8). The problem was solved in the special case of a tube configuration
such that the equation describing the gas oscillations was reduced to an ordinary differential
equation [2, 3}. An integrodifferential equation was derived to cover a more general situa-
tion, and some of its qualitative propertlies were discussed. To the best of the author's know~
ledge, quantitative results complementary to [1] have not been obtained to date.

We solve this probLem in the present article by the method of [4], the substance of which
can be briefly formulated as the representation of the solution by a linear superposition of
nonlinear waves of different families. An effective technigue has been proposed in [4] for
solving the derived nonlinear functicnal equations, which coincide with the results of [2, 3]
in the limit € » 0. In [5] the method was generalized to a broader class of problems for & -
0, which are reducible to the solution of integrodifferential equations.

Evidently, many standard problems of the oscillations of a gas can be solved by the tech-
nique of [4] or some modification thereof. Such problems include subharmonic resonance [6, 7]
and oscillations in a tube with allowance for the boundary layer in the approximation of [3].
In the present article we illustrate the capabilities of the method in the example of the prob-
lem of near-resonance oscillations of a gas in a variable tube.

By analogy with one-dimensional flows, we refer to the quantities J¥ = u * 2a/(% — 1)
as Riemann invariants. We introduce dimensionless dependent and independent (primed) vari-
ables by the formula [4].

u = eau’, J¥ = a)leJ¥ L 2/(x — 1)1, )
a=ayl +ea"), t =T, 2 =qa,02.

Here u is the flow velocity, a is the sound velocity, t is the time, x is the Cartesian co-
ordinate, T is a characteristic time of the flow, g, is the unperturbed sound velocity, %

is the adiabatic exponent, and € is a small parameter characterizing the amplitude of the
perturbations. In accordance with the conclusions of [4], the flow can be regarded as isen-
tropic. The equations governing the wave motions of the gas are writtenin the form

(377 /0t) + %’i dS/dc =0, (8J7/dt), — < dS/dz =0,

where the following notation is used for the operators of differentiation along the char-
acteristics C-:

(8/08) = 0/0t + (u + a)d/dx; (8/dt), = 3/dt + (v — a)d/dx;

S = S(x) is the cross—sectional area of the tube. As in [1], we set S = $o(1 + €S'). The
boundary conditions for the investigated problem have the form

w0, &) = adf(t), 1(t) = J(t + T), w(X, t) =0,
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where X is the length of the tube and T i1s the period of the oscillations of the piston.

Inasmuch as we are investigating near-resonance oscillations, the relation [1] 2X =
aoT(k + A) holds, where k is an integer and A v ¢.

According to [1, 4], for the stated preblem to be solvable the accuracy of determination
of the flow parameters at the boundaries must be of the order of &?. Hence it follows that
it is sufficient to calculate the positions of the characteristics within error limits €, and
terms of the order of ¢’ can be neglected in the equations for the invariants.

We substitute Egqs. (1) in the equations of motion. Bearing the foregoing discussion in
mind, we obtain the simplified equations

@JFlot), + e(J T+ J)dS/dx/2 =

(0J 10ty — e(J* + J)dSIdxl2 = (2)
C+ dafdt =1 -+ (e + Ve h + (3 — x)eJ—/l.L, (3)
C™: dzldt = —1 + (n -+ DeJ /4 + 3 — w)ed /4 “

THO, &) - IO, 1) = 28f(t)ie, TT(n, 8) + J (n, &) = 0.

We drop the prime from dimensionless variables from now on; n = (k + A)/2 = 0(1) is the
dimensionless length of the tube. We adopt the oscillation period of the piston as the char-
acteristic time in (1), so that f£(t + 1) = f(t).

Below, we follow the analytical procedure of [4]. We integrate (2) and (3) along the
corresponding characterlstlcs Tt is evident from (2) and (3) that integration along C*
(C7) the invariants gt (J7) on the right~hand sides of the equations can be taken as con-
stants equal to their values at .the initial points of the flow. The remaining integrals, on
the other hand, must be computed along the characteristics of the linearized equations:

t=zx+ & t=—zr+n-Tn

We always interpret the characteristic variables £ and n as the times of departure of
the characteristics C+(C_) from the left (right) boundary.

The integration of (3) yields

t—g—
y “(m)dn,

2t—-n—n

c: x=n—[1wxz_1£![_(n)](t—1]) + 3% f J*(8) &

n—n

c*: x:[1+ﬁi'FJsJ+(§)](t—§

From this result and from (4) we determine the time t, at which the characteristic C+,
emanating from the piston at time £,, returms to it (Fig. 1):

o w1 4 e
Ly —'Eo + 2n{1-—-——4—6¢] ({.‘,O):I—— (5)

Inasmuch as we are considering periodic solutions, the following equations are valid:

iy R
j Jo (n)dn——fﬁ gk = — [ 7% (8) dt = I, = const, | (6)

to-n
and Eq. (5) coincides with the corresponding equation of one-dimensional gas dynamics [4].

According to the foregoing, all the equations pertaining to the integration of {(3) are
valid with error O(e). Similarly, in the integration of (2) below, the equations are valid
with error 0(e?) Denoting dS/dx = ®(x), we have
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Jo (tl, T’L) = —(tl) = _J+ (tl’ ! ) =

= =TT &)+ 5T () jcp dz+—§ (——%li—&)f’(*1)dn,

0

TH(tg, 0) = TF (tg) = — ™ (15, 0) + 221 (t) = — J ™ (1)) —

e

ty

L o wan— g o (25178 rwm+ 2,

n iy (7
J+<t2>=—%J’*@o)f@(x)dx—% f (=5 o an —

—erwfewa—2fo(" T @a+ R + 1),
0 £

Relations (5) and (7) form a closed system of equations, which must be satisfied by the
solution of the stated problem. The constant I, in (6), as will be evident below, is deter~
mined by the initial conditions of the problem.

As far we have 1gnored the problem of shock waves, which can occur in a flow field. It
is readily shown that their position is determined with the required accuracy by the area rule
[4] in the domain where the solution is multiple-valued. These areas can be calculated from
the profiles transformed in accordance with the laws of one-dimensional gas dynamies [4], i.e.,
in the determination of the shock positions, as in the determination of the characteristics
(5), effects associated with the variation of the tube cross section are inconsequential.

Thus, the flow parameters in our situation and in the case of one-dimensional flows, as
is evident from (5) and (6), differ by an amount of the order of e? at any point of the flow.
The same remark applied to the shock wave velocities.

Substituting (5) in (7), expanding the resulting equation in a Taylor series, and taking
into account the periodicity of the required solution, we arrive at an integrodifferential
equation [1] (we omit these simple computations, which are analogous to those in [4, 57,
noting only that the result implies the relation § = ¢*). The solution of this equatilon poses
a complex problem, whereas the system (5), (7) can be solved according to the scheme of [4].

On the interval [0, 1] we specify a function J,(f) satisfying the condition Jo(0) =
Jo(1). We use the transformation (5) to reduce the interval [0, 1] to the interval [t(Q),
t(1)], which alsc has unit length. We calculate the new values of J,(£) at the correspond-
ing points according to Eq. (7) without regard for the integral term, i.e., according to the
one—~dimensional gasdynamical equation [4]. TIf domains of multiple value occur in the dis-
tributdion J,(£), we introduce second-order discontinuities therein according to the area rule.
Regarding J:(£) as a perilodic function, we calculate the integral term in Eq. (7) from this
function and add it to J;(£). It is seen at once that this new distribution J,(E) is re-
lated to Jo(E) by Eq. (7), correct to within €. We determine J,(£) on [0, 1] from the
periodicity condition and repeat the indicated procedure until the result stabilizes. We

! 1
note that X Jzﬁ)dﬁzzg Jy(8)d§ =—1I, » and this quantity is preserved in the course of the itera-
g 0

1
tions. In Eq. (6), therefore, f0==-k5‘J0@)d§

We have used the above-described algorithm to carry cut computations for wvarious tube
profiles ¥(x), laws f£(t) governing the motion of the piston, and values of the small param-
eters A and §.
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Figure 2 shows the results of the computations, in which it was assumed that f(t) =
[2/(% + 1)}sin27t, n = 1/2, ¢ = 2:107%, 0 = (2n)%0g, I, = 0, ® = 1l.4. Curves 1-3 corre-
spond to the values of o = 0, 1, 2. The vertical segments in the figure indicate shock waves.
Curve 1 corresponds to resonance oscillations in a cylindrical tube. It is seen that the
amplitude of the periodic oscillations decreases as the opening of the tube is increased. It
is conceivable that channels exist with a configuration such that the amplitude of the period-
ic resonance oscillations in them exceeds the amplitude of the oscillations in a cylindrical
tube. However, this kind of situation was not recorded in computations with different func-
tions &(&).

All the examples contained in [1-3, 6, 7] pertaln to periodic oscillations. Problems of
the same class have been solved up to now by the method of [4, 5]. In reality, the domain of
validity of the latter is much broader. Essentially, as noted in [4, 5], it is the method of
characteristics, which makes it possible, given certain additional assumptions regarding the
sought-after solutions, to calculate the positions of the characteristics, the values of the
"invariants" transported by the characteristics, and the positions of the shock waves gener-—
ated from the abrupt intersection of characteristics of one family at finite distances.

As an example illustrating the possibilities of the method we solve the problem of oscil-
lations in a tube with a fairly large opening. We set o = 3 in the preceding expression for ¢.
Our computations show that the flow in this case becomes quasiperiodic after large times.
Superimposed on the solution with unit period is a 'long' modulation with a period roughly
equal to 60. Oscillograms of J°(&) = [(% + 1)/4)JF(E) at the left boundary at the times To,
To + 20, To + 40, and To + 60are plotted in Fig. 3, in which the indicated times are desig-
nated by the numerals 1-4 (the curves are reduced to the interval [—1, 0] with respect to
periodicity, and T, is sufficiently large that the initial conditions are "forgotten'). It
is seen that in a flow containing one shock wave (curve 1) a second shock is generated (curve
2), then the two shocks merge (curve 3), and the flow pattern (curve 4) returns to the origi-
nal state (curve 1); curves 1 and 4 are indistinguishable in the scale of Fig. 3, and so curve
4 is represented by a dashed line. The only modification that has to be introduced in the
above-described algorithm for the given situation is that the solution is not continued onto
the interval [0, 1] in the course of the iterations. As for the integral involved in (7),
it can be computed, as before, by virtue of the quasiperiodicity of the solution. We denote
by &£g1 (£g2) the arrival times of the first (second) shock at the pistom, and by N an inte-
ger such that N — 1 < £g; <X N. The quasiperiodicity of the process is readily discerned from
Fig. 4, in which the solid curve represents a broken line connecting the points [27(£g: — N),
(N — No)/60], and N, is a sufficiently large number to allow stabilization of the indicated
regime; this number depends on the intial conditions. Calculations show that the initial con-
ditions do not affect the final solution.

The resulting flow pattern is explained by the interference of waves having a period that
is a multiple of the period of the driving "force" with the proper solution for a variable
channel. With an increase in o the role of such waves increases. A further increase in «
makes the flow pattern even more complicated.
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A detailed analysis of the causes underlying the onset of the "long' modulation would
be of independent interest and is not carried out in the present study.

The author is grateful to V. E. Fortov and S. I. Anisimov for their interest and encour-
agement.
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INTERACTION OF AIR SHOCK WAVES WITH POROUS COMPRESSIBLE MATERIALS

L. G. Gvozdeva, Yu. M. Faresov, UDC 532.593:532.529
and V. P. Fokeev

Experimental studies of the process of interaction of air shock waves with porous com-
pressible materials as a polyurethane foam and formed plastics have shown that such inter-
action has a number of unique features. Thus, it was shown in [1] that the maximum pressure
on a wall beneath a layer of polyurethane foam can significantly exceed the value of pres-
sure attained in normal reflection of a shock wave from a rigid wall. It was proposed in
[1] that this effect could be explained by the solid phase being set in motion behind the
entering shock wave. Intensification of an oblique shock wave upon incidence on a layer of
porous compressible material was analyzed in [2]. Interaction of an air shock wave with a
porous screen of polyurethane foam was studied in [3], where a significant reduction in peak
pressure on the wall was recorded in the presence of an air gap between the wall and screen.
The process observed in [3] was described theoretically in [4] by a computation technique
first developed for gas dynamic flows with solid particles. Below we will present results
of experimental studies of the interaction of a steady-state shock wave with a wall covered
by layers of porous compressible material of various thicknesses.

The materials used for the experiment were PPU-3M-1 polyurethane foam and PKhV-1 foamed
plastic; the densities of these materials are approximately the same (33 and 50 kg/m® re-
spectively), while the rigidity of the foamed plastic is significantly higher. The loading
for failure of this plastic is (4-7)-10° N/m*® [5].
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